9,723 research outputs found

    Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique

    Full text link
    The Goldenberg-Vaidman (GV) protocol for quantum key distribution (QKD) uses orthogonal encoding states of a particle. Its security arises because operations accessible to Eve are insufficient to distinguish the two states encoding the secret bit. We propose a two-particle cryptographic protocol for quantum secure direct communication, wherein orthogonal states encode the secret, and security arises from restricting Eve from accessing any two-particle operations. However, there is a non-trivial difference between the two cases. While the encoding states are perfectly indistinguishable in GV, they are partially distinguishable in the bi-partite case, leading to a qualitatively different kind of information-vs-disturbance trade-off and also options for Eve in the two cases.Comment: 9 pages, 4 figures, LaTex, Accepted for publication in Quantum Information Processing (2014

    Beyond the Goldenberg-Vaidman protocol: Secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states

    Full text link
    It is shown that maximally efficient protocols for secure direct quantum communications can be constructed using any arbitrary orthogonal basis. This establishes that no set of quantum states (e.g. GHZ states, W states, Brown states or Cluster states) has an advantage over the others, barring the relative difficulty in physical implementation. The work provides a wide choice of states for experimental realization of direct secure quantum communication protocols. We have also shown that this protocol can be generalized to a completely orthogonal state based protocol of Goldenberg-Vaidman (GV) type. The security of these protocols essentially arises from duality and monogamy of entanglement. This stands in contrast to protocols that employ non-orthogonal states, like Bennett-Brassard 1984 (BB84), where the security essentially comes from non-commutativity in the observable algebra.Comment: 7 pages, no figur

    On the origin of nonclassicality in single systems

    Full text link
    In the framework of certain general probability theories of single systems, we identify various nonclassical features such as incompatibility, multiple pure-state decomposability, measurement disturbance, no-cloning and the impossibility of certain universal operations, with the non-simpliciality of the state space. This is shown to naturally suggest an underlying simplex as an ontological model. Contextuality turns out to be an independent nonclassical feature, arising from the intransitivity of compatibility.Comment: Close to the published versio

    Inhomogeneous Cooling of the Rough Granular Gas in Two Dimensions

    Full text link
    We study the inhomogeneous clustered regime of a freely cooling granular gas of rough particles in two dimensions using large-scale event driven simulations and scaling arguments. During collisions, rough particles dissipate energy in both the normal and tangential directions of collision. In the inhomogeneous regime, translational kinetic energy and the rotational energy decay with time tt as power-laws tθTt^{-\theta_T} and tθRt^{-\theta_R}. We numerically determine θT1\theta_T \approx 1 and θR1.6\theta_R \approx 1.6, independent of the coefficients of restitution. The inhomogeneous regime of the granular gas has been argued to be describable by the ballistic aggregation problem, where particles coalesce on contact. Using scaling arguments, we predict θT=1\theta_T=1 and θR=1\theta_R=1 for ballistic aggregation, θR\theta_R being different from that obtained for the rough granular gas. Simulations of ballistic aggregation with rotational degrees of freedom are consistent with these exponents.Comment: 6 pages, 5 figure

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    The dyadic diffraction coefficient for a curved edge

    Get PDF
    A compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edge formed by perfectly conducting curved or plane surfaces is obtained. This diffraction coefficent remains valid in the transition regions adjacent to shadow and reflection boundaries, where the diffraction coefficients of Keller's original theory fail. The method is on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by plane, cylindrical, conical, and spherical waves. When the proper ray fixed coordinate system is introduced, the dyadic diffraction coefficient for the wedge is found to be the sum of only two dyads, and it is shown that this is also true for the dyadic diffraction coefficients of higher order edges. One dyad contains the acoustic soft diffraction coefficient; the other dyad contains the acoustic hard diffraction coefficient. The expressions for the acoustic wedge diffraction coefficients contain Fresnel integrals, which ensure that the total field is continuous at shadow and reflection boundaries. The diffraction coefficients have the same form for the different types of edge illumination; only the arguments of the Fresnel integrals are different. Since diffraction is a local phenomenon, and locally the curved edge structure is wedge shaped, this result is readily extended to the curved edge

    Analysis of the EM scattering from arbitrary open-ended waveguide cavities using axial Gaussian Beam tracking

    Get PDF
    The electromagnetic (EM) scattering from a planar termination located inside relatively arbitrarily shaped open-ended waveguide cavities with smoothly curved interior walls is analyzed using a Gaussian Beam (GB) expansion of the incident plane wave fields in the open end. The cavities under consideration may contain perfectly-conducting interior walls with or without a thin layer of material coating, or the walls may be characterized by an impedance boundary condition. In the present approach, the GB's are tracked only to the termination of the waveguide cavity via beam reflections from interior waveguide cavity walls. The Gaussian beams are tracked approximately only along their beam axes; this approximation which remains valid for relatively well focussed beams assumes that an incident GB gives rise to a reflected GB with parameters related to the incident beam and the radius of curvature of the wall. It is found that this approximation breaks down for GB's which come close to grazing a convex surface and when the width of the incident beam is comparable to the radius of curvature of the surface. The expansion of the fields at the open end depend on the incidence angle only through the expansion coefficients, so the GB's need to be tracked through the waveguide cavity only once for a wide range of incidence angles. At the termination, the sum of all the GB's are integrated using a result developed from a generalized reciprocity principle, to give the fields scattered from the interior of the cavity. The rim edge at the open end of the cavity is assumed to be sharp and the external scattering from the rim is added separately using Geometrical Theory of Diffraction. The results based on the present approach are compared with solutions based on the hybrid asymptotic modal method. The agreement is found to be very good for cavities made up of planar surfaces, and also for cavities with curved surfaces which are not too long with respect to their width
    corecore